Envie de participer ?
Bandeau

La trajectoire d'une balle de carabine est un sujet complexe influencé par de nombreux facteurs. Cet article explore ces facteurs en détail, offrant une compréhension approfondie de la balistique extérieure.

Coefficient Balistique (CB)

Le coefficient balistique (CB) est une mesure de la capacité d'une balle à surmonter la résistance de l'air. Il dépend de la masse, du diamètre, de la forme et de la longueur de la balle. Un CB élevé indique une meilleure performance, permettant à la balle de maintenir sa vitesse et sa trajectoire plus efficacement.

D'après le Dr Boris Karpov, du laboratoire de recherche de l'armée américaine, 1944, on utilise couramment aujourd'hui le coefficient balistique (BC ou G), qui représente non seulement les caractéristiques de la forme et du poids de la balle mais aussi Tenir compte de la résistance réelle de l'air à une vitesse déterminée. Les modèles de calcul actuels se basent sur des projectiles standardisés qui sont au nombre de 8, de G1 à G8. L’idée est de ne pas devoir refaire des calculs fous pour chaque nouveau projectile mais de se « raccorder » à un des projectiles standardisés.

La principale force qui s’applique sur le projectile en vol (hors vent et gravité) est la trainée pour laquelle on a besoin d’un coefficient de trainée à incidence nulle (CD0). Chaque projectile de 1 à 8 a donc une courbe de coefficient de trainée en fonction du nombre de Mach qui lui est propre et grâce au coefficient balistique on vient se fitter à une courbe existante.

Cependant il faut faire un choix, et de fait l’industrie est encore fort orientée G1 (pour des questions d’accessibilité et financières) mais dans le tir longue distance on se rapproche beaucoup plus du projectile G7 qui est plus allongé et qui dispose d’un rétreint conique à l’arrière.

Lire aussi: Comprendre les balles de pistolet

Le coefficient balistique est la performance d’une ogive lors du tir, à maintenir sa vitesse, sa trajectoire, sa résistance aux vents latéraux et sa résistance dans l’air. Aussi le CB est en fonction de la masse, du diamètre, de sa forme (sécante, tangente, hybride) et de sa longueur.

Le G7 est rarement publié par les fabricants de munitions et est utilisé le plus souvent par les fabricants d'ogive de qualité comme les Berger VLD ou les Scenar et Scenar-L de Lapua ainsi que certaine Sierra SMK, Hornady ELD Match et quelques autres. En conclusion le G1 s’applique à une ogive "flat base" d’une longueur de 2x le calibre, avec un bout rond comme les ogives pour armes de poing.

En Europe le coefficient est de 0,000 à 1,0. Un coefficient de 0,250 sera moins efficace qu’un coefficient de 0,550. En conclusion plus le coefficient balistique est élevé plus l'ogive ira loin avec une trajectoire plus tendue qu’avec une ogive qui aurait un coefficient balistique plus bas.

Forces agissant sur la balle

La vitesse, joue un grand rôle ici. Si l'ogive maintient bien la vitesse initiale, elle ira plus loin puisqu'elle décélèrera moins vite. Pour cela il faut qu'un des signes particuliers soit d'utiliser pour le profil avant une ogive de forme sécante au lieu de tangente et que le profil arrière de l'ogive soit de forme conique (BT ou Boatail). Ainsi sa résistance engendrée par la traînée sera minime.

Durant toute la phase de son vol, le projectile sera soumis principalement à deux forces : la force de gravité qui le fera chuter vers le centre de la Terre et la force de traînée, la retardation, due à l’air dans lequel il se déplace, qui le ralentira et l’empêchera d’aller aussi loin que s’il était tiré dans le vide.

Lire aussi: Le Rechargement

A sa sortie du canon, le projectile va rencontrer, à grande vitesse, l’air ambiant immobile. Il va de ce fait subir un choc que l’on appelle en l’occurrence "la percussion initiale" et aussi "l’onde de choc" et qui tentera également à le déstabiliser.

  • Plus l'air rencontré par le projectile est froid, plus l'air sera dense et plus vite le projectile sera freiné.
  • Plus l'air rencontré par le projectile est chaud, moins l'air est dense et moins le projectile sera freiné. Il en résulte une portée plus longue.

Si votre canon à une rayure à droite, le projectile déviera vers la droite et bien sûr si la rayure est à gauche, le projectile ira vers la gauche. La précession est le nom donné au changement graduel d'orientation de l'axe de rotation d'un objet ou, de façon plus générale, d'un vecteur sous l'action de l'environnement, par exemple, quand un couple lui est appliqué. Ce phénomène est aisément observable avec une toupie mais tous les objets en rotation peuvent subir la précession.

Gravité

La trajectoire : Elle n’échappe pas à la loi de la gravitation mise en évidence par Newton ! La gravité joue un rôle certain pour la descente de la trajectoire de l'ogive car elle descendra. Les effets de la gravité et des vents sont directement proportionnels au temps d’exposition de l’ogive à ceux-ci.

Vent

L'effet le plus important du vent sur le vol de la balle est de changer sa direction horizontale. Pour engager des cibles à grande distance, le tireur doit apprendre à estimer les paramètres de la vitesse de vent.

La vitesse et la direction du vent peuvent être mesurées par les instruments appropriés, ou être estimées par les observateurs expérimentés à partir des signes tels que le mouvement des feuilles et de l'herbe. Les drapeaux de vent et d'autres indicateurs sont placés à différentes distances pendant la durée de certaines compétitions pour faciliter l’estimation des effets du vent.

Lire aussi: Pistolets à balles caoutchouc : Guide complet

Un vent de10-mph soufflant de 3 heures ou de 9 heures a une résultante de 10 mph (16 km/h). Les vents 10 mph de 2, 4, 8 ou 10 heures ont une résultante d'environ 8,7 mph (14 km/h), alors que les vents de 1, 5, 7 ou 11 heures ont une résultante de 5,0 mph (8 km/h) Les vents soufflant de 6 ou 12 heures n'ont aucune influence.

La vitesse et la direction de vent ne sont pratiquement jamais uniformes tout au long de la trajectoire (distance de l’arme à la cible), et ainsi le tireur en estimant l’influence du vent doit décider de concentrer son attention sur le vent près de l’arme ou sur le vent le plus proche la cible. La réponse est que les conditions de vent près de l’arme ont un effet beaucoup plus grand que les conditions près de la cible.

Rotation gyroscopique

On va faire tourner le projectile à grande vitesse (plusieurs milliers de tours par minutes) selon son axe longitudinal. C'est un peu plus technique mais il existe une formule de Miller qui permet de déterminer un coefficient de stabilité en tenant compte de la longueur de l'ogive, de son poids, son diamètre et sa vitesse de rotation donnée par le pas de rayure.

Pour les besoins de la compréhension du phénomène, à une vitesse de « x » m/s = distance parcoure en mètre et en l’espace-temps de 1 seconde, la vitesse de rotation du projectile sera de « y » tours pendant cette même seconde.

Dès que le projectile entre en contact avec la rayure du canon, il est animé par un mouvement de rotation sur lui-même au fur et à mesure qu'il avance dans le canon. Au contact de l'air et des forces le contraignant dans son avancée vers la cible lointaine, le projectile dévie de sa trajectoire dans le sens de sa rotation (par exemple une ogive de .308 Winchester peut dériver de 31 cm sur une distance de 1.000 mètres par rapport son axe de visée initial).

Il est clair qu'un projectile capable de conserver la stabilité tout au long de son vol ira plus loin et sera plus précis. C'est la capacité d'une ogive d'être le plus stable possible au passage de la vitesse supersonique vers la zone transsonique.

Il faut savoir qu'une vitesse de rotation gyroscopique peu élevée dans la zone transsonique augmentera la précession et la nutation, l'ogive sera encore plus sensible aux perturbations climatique (surtout le vent). Une ogive courte passera mieux la zone transsonique car le centre de pression et le centre de gravité sont très proche (X) et donc moins vite déstabilisée.

Balistique interne

Que se passe-t-il lorsque la détente est pressée ? Lorsque vous appuyez sur la détente et que l'amorce éclate, la flamme intense créée par le mélange d'amorçage remplit l'intérieur de la douille et allume la charge de poudre au grand complet. La pression montante générée par la poudre en combustion va pousser sur la paroi de l'étui, ce qui va la déformer jusqu'à ce qu'elle s'applique au maximum contre la paroi de la chambre où la cartouche est logée.

Les gaz ne pouvant plus se dilater davantage à l'intérieur de l'étui vont emprunter la seule sortie possible et vont alors pousser le projectile dans le canon. Si le projectile est lourd, et maintenu solidement dans le collet de la cartouche, ou si la pression des rayures sur le projectile est grande, le confinement de la poudre est accentué et la combustion va procéder plus rapidement que si ces conditions n'auraient pas été présentes.

Ensuite le projectile entre dans le canon et s'imprime de la rayure exprimée par une fraction 1/x (x étant la distance en pouces parcourue pour 1 rotation) ce qui va donner à l'ogive de se mettre en rotation sur elle-même tout au long de sa progression dans le canon (effet gyroscopique) c'est ce sens de rotation qui va donner la stabilité à l’ogive sur son parcourt jusqu'à la cible.

Plus le canon sera long, plus la poudre aura de temps de se consumer entièrement dans un milieu clos ce qui va donner plus de pression pour pousser le projectile et donc plus de vitesse à la bouche. Toutefois, il y a des limites dans la longueur du canon car il faut veiller à ce que la pression qui pousse derrière le projectile soit toujours supérieure à la pression qui se trouve devant le projectile.

Une fois le point d'égalité étant atteint, le projectile serait alors freiné à l'intérieur du canon... Tous les paramètres de la balistique interne sont identiques, c'est la longueur du canon qui a permis une combustion plus complète de la poudre à l'intérieur ce qui a généré plus de pression, plus longtemps, pour pousser le projectile et donc plus de vitesse à la bouche du canon.

Balistique extérieure

Le projectile ayant quitté la zone de turbulences propre à la balistique intermédiaire, nous entrons dans le domaine typique de la balistique extérieure.

Pour avoir une idée de la forme de la trajectoire d'une balle d'arme à feu, regardez le " drive " d'un golfeur ou le tir d'un footballeur. Supposons que notre carabine soit posée avec le canon parfaitement à l’horizontal sans tenir compte d’un axe de visée. On se retrouve dans la même situation que si le projectile se déplaçait dans les gaz, le culot en avant et à une vitesse supersonique. Il est aisé de se représenter les phénomènes de déstabilisation auxquels il est soumis, la précession et la nutation.

Le projectile est donc freiné par l'air dans lequel il se propage. De par sa forme, un projectile classique a son centre de gravité derrière le centre de pression (là où s’applique la résultante des forces aérodynamiques), contrairement à un projectile flèche. On dit donc que le projectile est statiquement instable parce que le nez est poussé vers le haut tandis que le culot est poussé vers le bas (sorte de tangage vers l’arrière).

Pour le stabiliser dynamiquement sur sa trajectoire il va donc falloir lui imposer une vitesse de rotation autour de son axe longitudinal, dépendante de sa forme et de sa vitesse de translation, et cela est réalisé au moyen des rainures dans le tube.

Conseils pratiques

Je précisais que pour les novices, qu'il était préférable de commencer avec une munition manufacturée de bonne qualité de type HPBT car elle offrait déjà des possibilités de résultat à longue distance. Ces munitions de qualité HPBT offre des écarts de vitesse entre chaque cartouche tirée de l’ordre de 9 m/s à 12 m/s pour les meilleurs. Cet écart de vitesse permet de toucher une cible à 1000m avec une tolérance moyenne de 30 cm environ (1 MOA à 1000m) à condition que vous soyez extrêmement précis lors de vos tirs.

  • Choisir un projectile ayant un bon coefficient balistique (CB) exprimé en G7 de préférence ou en G1.
  • Choisir des étuis de qualité ayant une bonne densité de matière. En gros tous les étuis devraient peser le même poids approximativement. S'ils ont été tiré 1 fois avant les essais et juste recalibré au niveau du collet c'est un plus car l'étui aura déjà les côtes de la chambre qui le recevra.

Et surtout, lorsque vous rechargez, veillez à former un lot de munition suffisant à vos besoins et que ce lot soit identique en tout point : Même marque d’étui, même marque et modèle de projectile, même marque et modèle d’amorce, même marque et type de poudre.

La charge idéale ou charge de tir est celle qui permet de tirer le meilleur parti d’une arme donnée en tenant compte de la valeur de la chambre où vient se loger l’étui de la cartouche mais aussi de l’état d’usure du canon. Son équilibre et sa précision découlent d’un choix raisonné des composants utilisés. Très peu d’armes sont des cas désespérés. Il suffit parfois de choisir LA balle qui convient le mieux à l’arme en question et surtout à son canon.

Forme, diamètre, poids d’un projectile doivent être adaptés au pas des rayures et aux caractéristiques physiques du canon. Comme le rechargement permet de disposer à volonté d’une très large plage de vitesses initiales et d’un vaste choix de composants, il est possible de régler la cartouche pour obtenir une excellente précision.

Cela peut passer par le choix d’une poudre différente, par celui d’une longueur hors tout de la cartouche (et ipso facto de l’enfoncement de la balle dans l’étui) adaptée à la configuration de la chambre et du canon, par des changements de type d’amorce.

Une fois ce stade atteint, les manipulations qu’on peut faire subir à l’étui (uniformisation des puits et des évents d’amorce, tournage extérieur des collets, sélection par poids ou par capacités) offrent un grand nombre d’opportunités qui permettent d’affiner encore cette précision. La valeur d’enfoncement de la balle, elle aussi, représente un vaste domaine qui influe de façon non négligeable sur la précision intrinsèque d’un couple arme munition.

Les charges idéales ne peuvent pas être prédites. Chacun doit trouver pour son propre compte celle qui convient dans les plages de données des différentes tables. D’autre personnes utilisent des techniques différentes que je respecte. Sur la table de rechargement en rapport avec les éléments on peut voir la charge de départ (starting load) et la charge maximum (maximum load).

Gardez et tirez toujours sur le même point à viser et ne cherchez pas à corriger votre tir. Vous l'aurez compris que la charge idéale pour le moment, se trouve là où le groupement est plus serré. En étant très méthodique et très méticuleux, il est possible d'avoir des écarts de vitesse de l'ordre de 2 à 3 m/s entre la plus lente et la plus rapide des cartouches.

Pourquoi bien régler sa carabine de chasse ?

Savoir bien tirer, c’est avant tout savoir régler son arme correctement. Au-delà de l’aspect sécuritaire, un mauvais réglage impactera la précision de votre tir. Veillez à effectuer vos réglages dans un endroit bien éclairé et à ce qu’il n’y ait pas trop de vent. La température extérieure joue également un rôle important. Évitez de régler votre carabine lorsqu’il fait trop chaud (au-dessus de 38°).

Assurez-vous que votre chargeur est bien positionné et correctement rempli. Si vous ajoutez des accessoires (lunette optique, point rouge, modérateur de son), le réglage de votre carabine sera également différent. Le réglage doit obligatoirement se faire sur tir appuyer. Ne placez jamais la carabine en appui sur le canon, mais toujours sur la longuesse.

Avant de procéder aux tirs de réglage, tirez une cartouche afin de dégraisser et de “flamber” le canon. Si vous utilisez une lunette de tir, veillez à ce qu’elle soit réglée correctement. Tournez ensuite le bouton de réglage en dérive situé sur le côté de la lunette dans le sens des aiguilles d’une montre pour déporter le tir vers la droite (visser pour aller à droite, dévisser pour aller à gauche).

Tirez 3 balles en visant le centre de la cible. Après les 3 tirs, il faut déterminer le point d’impact moyen afin de déterminer les corrections à apporter.

La trajectoire de la balle croise deux fois la visée optique. Le canon étant situé en dessous de la lunette, la balle va sortir en dessous de la visée optique, en général 4 cm en dessous. La DRO correspond à une portée telle que la balle ne monte jamais à plus de 4 cm au-dessus de la ligne de visée de l’arme. Cet écart est généralement atteint à une distance de 100 m.

Si vous effectuez des tirs longue distance (100 m et plus) les autres balles ne doivent être tirées que pour achever un animal qui n’aurait pas été tué, mais blessé au premier tir.

Tableau sniper pour les paramètres d'inclinaison en fonction de la distance à la cible pour du .308 win en 168 grains

Le tableau qui suit illustre les paramètres d'inclinaison en fonction de la distance à la cible pour du .308 win en 168 grains :

Il sera donc considéré comme négligeable. Dans la description de la répartition des impacts sur une cible, la dispersion (l’inverse du groupement) se rapporte à la dispersion des projectiles autour du centre du point visé. Une petite dispersion est synonyme de ce qui s'appelle généralement la bonne précision et une grande dispersion est synonyme de ce qui s'appelle généralement précision faible.

Les causes de la dispersion sont parfois divisées en deux classes. La première, qui peut s'appeler l'erreur de visée se rapporte à des erreurs dans la direction dans laquelle l’arme était alignée lors du départ du coup. La dispersion balistique dépend principalement de la qualité du fusil et des munitions.

Si le tireur peut faire des groupements d’une manière satisfaisante avec de petits projectiles aux distances courtes telles que 100 mètres, cela tient à la qualité du fusil et aux propriétés qui déterminent la qualité des munitions. Les performances du système arme/munitions ne peuvent pas être transposées aux longues distances à partir des groupements obtenus aux courtes distances, parce que la dispersion verticale aux longues distances dépend très fortement de la variation de la vitesse initiale entre chaque tir, tandis que l'exactitude à courte portée est souvent tout à fait peu sensible à ces variations de vitesse.

Les informations sur les conditions d’environnement doivent être fournies par le tireur ou par son observateur. Les divers éléments de cette information sont plus ou moins importants, selon / en fonction de la distance de la cible et de l'importance relative de l'effet de chaque élément de la trajectoire. La vitesse initiale, le coefficient balistique, la distance, les conditions de vent et la vitesse de la cible (dans le cas d'une cible mobile) ont des effets relativement grands tout au long de la trajectoire depuis l’arme jusqu’à la cible et doivent donc être connus le plus exactement.

L'humidité relative affecte les performances d’une balle parce qu'elle affecte la densité de l'air dans lequel la balle vole. Contrairement à ce que beaucoup de gens supposent, l’air humide est moins dense que l'air sec dans les mêmes conditions de température et de pression barométrique, parce que le poids moléculaire de l'eau est moins grand que les poids moléculaires des principaux gaz composant l'air que nous respirons (79% d'azote et 21% d'oxygène) et qui composent notre atmosphère. L'effet de l'humidité sur les performances des balles est petit par rapport à d'autres facteurs influents. L’humidité relative à un plus grand effet sur la densité d'air à température élevée qu'à basse température, mais même à 32°C, la différence de densité entre l'air complètement sec et l'air complètement saturé est seulement de 0,1%.

tags: #trajectoire #balle #carabine #explication

Post popolari: