Plusieurs facteurs peuvent expliquer pourquoi les tirs d'une carabine 7x64 atterrissent systématiquement trop haut. Il est essentiel de comprendre ces causes pour ajuster correctement la carabine et obtenir une précision optimale.
Le coefficient balistique (CB) est la performance d’une ogive lors du tir, à maintenir sa vitesse, sa trajectoire, sa résistance aux vents latéraux et sa résistance dans l’air. Le CB est en fonction de la masse, du diamètre, de sa forme (sécante, tangente, hybride) et de sa longueur. La vitesse, joue un grand rôle ici. Si l'ogive maintient bien la vitesse initiale, elle ira plus loin puisqu'elle décélèrera moins vite. Pour cela il faut qu'un des signes particuliers soit d'utiliser pour le profil avant une ogive de forme sécante au lieu de tangente et que le profil arrière de l'ogive soit de forme conique (BT ou Boatail). Ainsi sa résistance engendrée par la traînée sera minime.
La trajectoire n’échappe pas à la loi de la gravitation mise en évidence par Newton ! La gravité joue un rôle certain pour la descente de la trajectoire de l'ogive car elle descendra. Les effets de la gravité et des vents sont directement proportionnels au temps d’exposition de l’ogive à ceux-ci. En Europe le coefficient est de 0,000 à 1,0. Un coefficient de 0,250 sera moins efficace qu’un coefficient de 0,550. En conclusion plus le coefficient balistique est élevé plus l'ogive ira loin avec une trajectoire plus tendue qu’avec une ogive qui aurait un coefficient balistique plus bas.
D'après le Dr Boris Karpov, du laboratoire de recherche de l'armée américaine, 1944, on utilise couramment aujourd'hui le coefficient balistique (BC ou G), qui représente non seulement les caractéristiques de la forme et du poids de la balle mais aussi Tenir compte de la résistance réelle de l'air à une vitesse déterminée. Les modèles de calcul actuels se basent sur des projectiles standardisés qui sont au nombre de 8, de G1 à G8. L’idée est de ne pas devoir refaire des calculs fous pour chaque nouveau projectile mais de se « raccorder » à un des projectiles standardisés.
La principale force qui s’applique sur le projectile en vol (hors vent et gravité) est la trainée pour laquelle on a besoin d’un coefficient de trainée à incidence nulle (CD0). Chaque projectile de 1 à 8 a donc une courbe de coefficient de trainée en fonction du nombre de Mach qui lui est propre et grâce au coefficient balistique on vient se fitter à une courbe existante. Cependant il faut faire un choix, et de fait l’industrie est encore fort orientée G1 (pour des questions d’accessibilité et financières) mais dans le tir longue distance on se rapproche beaucoup plus du projectile G7 qui est plus allongé et qui dispose d’un rétreint conique à l’arrière.
Lire aussi: Améliorez la précision de votre tir
Le G7 est rarement publié par les fabricants de munitions et est utilisé le plus souvent par les fabricants d'ogive de qualité comme les Berger VLD ou les Scenar et Scenar-L de Lapua ainsi que certaine Sierra SMK, Hornady ELD Match et quelques autres. En conclusion le G1 s’applique à une ogive "flat base" d’une longueur de 2x le calibre, avec un bout rond comme les ogives pour armes de poing.
Le projectile ayant quitté la zone de turbulences propre à la balistique intermédiaire, nous entrons dans le domaine typique de la balistique extérieure. Durant toute la phase de son vol, le projectile sera soumis principalement à deux forces : la force de gravité qui le fera chuter vers le centre de la Terre et la force de traînée, la retardation, due à l’air dans lequel il se déplace, qui le ralentira et l’empêchera d’aller aussi loin que s’il était tiré dans le vide. A sa sortie du canon, le projectile va rencontrer, à grande vitesse, l’air ambiant immobile. Il va de ce fait subir un choc que l’on appelle en l’occurrence "la percussion initiale" et aussi "l’onde de choc" et qui tentera également à le déstabiliser.
Supposons que notre carabine soit posée avec le canon parfaitement à l’horizontal sans tenir compte d’un axe de visée. On se retrouve dans la même situation que si le projectile se déplaçait dans les gaz, le culot en avant et à une vitesse supersonique. Il est aisé de se représenter les phénomènes de déstabilisation auxquels il est soumis, la précession et la nutation. Pour avoir une idée de la forme de la trajectoire d'une balle d'arme à feu, regardez le " drive " d'un golfeur ou le tir d'un footballeur.
Le projectile est donc freiné par l'air dans lequel il se propage. De par sa forme, un projectile classique a son centre de gravité derrière le centre de pression (là où s’applique la résultante des forces aérodynamiques), contrairement à un projectile flèche. On dit donc que le projectile est statiquement instable parce que le nez est poussé vers le haut tandis que le culot est poussé vers le bas (sorte de tangage vers l’arrière). Pour le stabiliser dynamiquement sur sa trajectoire il va donc falloir lui imposer une vitesse de rotation autour de son axe longitudinal, dépendante de sa forme et de sa vitesse de translation, et cela est réalisé au moyen des rainures dans le tube.
Dès que le projectile entre en contact avec la rayure du canon, il est animé par un mouvement de rotation sur lui-même au fur et à mesure qu'il avance dans le canon. Au contact de l'air et des forces le contraignant dans son avancée vers la cible lointaine, le projectile dévie de sa trajectoire dans le sens de sa rotation (par exemple une ogive de .308 Winchester peut dériver de 31 cm sur une distance de 1.000 mètres par rapport son axe de visée initial). Si votre canon à une rayure à droite, le projectile déviera vers la droite et bien sûr si la rayure est à gauche, le projectile ira vers la gauche.
Lire aussi: Optimiser votre lunette de carabine
La précession est le nom donné au changement graduel d'orientation de l'axe de rotation d'un objet ou, de façon plus générale, d'un vecteur sous l'action de l'environnement, par exemple, quand un couple lui est appliqué. Ce phénomène est aisément observable avec une toupie mais tous les objets en rotation peuvent subir la précession. Lors de la précession, l'angle que fait l'axe de rotation ou le vecteur avec une direction donnée reste fixé. Le vecteur ou l'axe de rotation décrit ainsi au cours du temps un cône dont l'axe est la direction fixée. Petit mouvement périodique qu'effectue l'axe de rotation d'un corps animé d'un mouvement de type gyroscopique, autour de la position moyenne de cet axe. Ce petit mouvement s'ajoute à la précession.
Il est clair qu'un projectile capable de conserver la stabilité tout au long de son vol ira plus loin et sera plus précis. C'est la capacité d'une ogive d'être le plus stable possible au passage de la vitesse supersonique vers la zone transsonique. Il faut savoir qu'une vitesse de rotation gyroscopique peu élevée dans la zone transsonique augmentera la précession et la nutation, l'ogive sera encore plus sensible aux perturbations climatique (surtout le vent). Une ogive courte passera mieux la zone transsonique car le centre de pression et le centre de gravité sont très proche (X) et donc moins vite déstabilisée.
Forme, diamètre, poids d’un projectile doivent être adaptés au pas des rayures et aux caractéristiques physiques du canon. Comme le rechargement permet de disposer à volonté d’une très large plage de vitesses initiales et d’un vaste choix de composants, il est possible de régler la cartouche pour obtenir une excellente précision. Cela peut passer par le choix d’une poudre différente, par celui d’une longueur hors tout de la cartouche (et ipso facto de l’enfoncement de la balle dans l’étui) adaptée à la configuration de la chambre et du canon, par des changements de type d’amorce. Une fois ce stade atteint, les manipulations qu’on peut faire subir à l’étui (uniformisation des puits et des évents d’amorce, tournage extérieur des collets, sélection par poids ou par capacités) offrent un grand nombre d’opportunités qui permettent d’affiner encore cette précision.
La valeur d’enfoncement de la balle, elle aussi, représente un vaste domaine qui influe de façon non négligeable sur la précision intrinsèque d’un couple arme munition. Les charges idéales ne peuvent pas être prédites. Chacun doit trouver pour son propre compte celle qui convient dans les plages de données des différentes tables. D’autre personnes utilisent des techniques différentes que je respecte. Sur la table de rechargement en rapport avec les éléments on peut voir la charge de départ (starting load) et la charge maximum (maximum load).
Et lorsque c'est fait, vous vous rendez au stand de tir pour effectuer les tirs d'essais et mesurer les vitesses de tous les projectiles. La distance idéale des essais est de 100m. Gardez et tirez toujours sur le même point à viser et ne cherchez pas à corriger votre tir. Vous l'aurez compris que la charge idéale pour le moment, se trouve là où le groupement est plus serré. Pour l'exemple nous allons dire que la charge retenue lors de ce premier essais est 41 grains.
Lire aussi: Guide des collimateurs de réglage
De nouveau et lorsque c'est fait, vous vous rendez au stand de tir pour effectuer les tirs d'essais et mesurer les vitesses de tous les projectiles. La distance idéale des essais est de 100m. Gardez et tirez toujours sur le même point à viser et ne cherchez pas à corriger votre tir. Encore une fois vous allez remarquer que plus vous approchez de la charge idéale et plus le groupement va se resserrer et les vitesses s'uniformiser. En étant très méthodique et très méticuleux, il est possible d'avoir des écarts de vitesse de l'ordre de 2 à 3 m/s entre la plus lente et la plus rapide des cartouches.
Voici d'autres pistes à explorer si votre carabine tire trop haut :
tags: #reglage #carabine #7x64 #trop #haut #causes