La calibration de caméra, ou étalonnage de caméra, est le processus qui consiste à estimer les paramètres caractéristiques d’une caméra et de son objectif. L’objectif principal est de corriger les imperfections optiques et de permettre des mesures précises ou une interprétation fiable de la scène observée. Ces paramètres, dits intrinsèques et extrinsèques, permettent de modéliser mathématiquement la caméra afin de déterminer la relation géométrique précise entre les points d’une scène tridimensionnelle (3D) et leur projection bidimensionnelle (2D) sur le plan image.
Les concepts fondamentaux de la calibration de caméra reposent en grande partie sur le modèle de caméra sténopé, ou modèle à trou d’épingle (pinhole camera model). Bien que simplifié, ce modèle constitue une approximation efficace pour la plupart des caméras conventionnelles et sert de base aux calculs de projection perspective. Ce modèle idéal décrit la caméra comme une simple boîte percée d’un trou minuscule (le sténopé) par lequel les rayons lumineux issus de la scène passent avant de former une image inversée sur le plan image situé à l’opposé.
Les paramètres intrinsèques décrivent les caractéristiques internes et optiques de l’ensemble caméra-objectif. Parmi les plus importants figurent la distance focale (exprimée en pixels, fx et fy, potentiellement différentes pour les directions x et y du capteur si les pixels ne sont pas carrés) et les coordonnées du point principal (cx, cy). Le point principal est la projection orthogonale du centre optique de l’objectif sur le plan image. Ces paramètres définissent la manière dont la caméra forme une image, indépendamment de sa position ou de son orientation dans l’espace.
Outre la distance focale et le point principal, les paramètres intrinsèques incluent également les coefficients de distorsion. Les lentilles réelles, contrairement au sténopé idéal, introduisent des aberrations géométriques qui déforment l’image. Les distorsions les plus courantes sont la distorsion radiale, qui provoque une déformation des lignes droites en courbes (en barillet ou en coussinet) d’autant plus marquée qu’on s’éloigne du centre de l’image, et la distorsion tangentielle, due à un mauvais alignement des lentilles ou à un parallélisme imparfait entre le plan de la lentille et le plan image. Ces distorsions sont modélisées par une série de coefficients (par exemple, k1, k2, k3 pour la distorsion radiale et p1, p2 pour la distorsion tangentielle).
Les paramètres extrinsèques, quant à eux, décrivent la position et l’orientation de la caméra dans un système de coordonnées mondial défini par l’utilisateur. Ils se composent d’une matrice de rotation (R) et d’un vecteur de translation (T). La matrice de rotation (3×3) définit l’orientation de la caméra (ses trois axes) par rapport aux axes du système de coordonnées mondial, tandis que le vecteur de translation (3×1) spécifie la position du centre optique de la caméra dans ce même système mondial. Ces paramètres lient donc la caméra à son environnement.
Lire aussi: Pourquoi la calibration est essentielle
La transformation d’un point 3D du monde réel vers sa projection 2D sur l’image implique une série de transformations entre différents systèmes de coordonnées. On distingue typiquement le système de coordonnées mondial (référence de la scène), le système de coordonnées caméra (centré sur la caméra, avec l’axe Z pointant souvent vers la scène), les coordonnées image normalisées (plan image à une distance focale unité) et enfin le système de coordonnées image (en pixels, sur le capteur). L’équation de projection complète combine la matrice des paramètres intrinsèques (K), la matrice de rotation (R) et le vecteur de translation (T) pour former la matrice de projection P = K[R|T], qui mappe directement les coordonnées homogènes d’un point 3D mondial vers ses coordonnées homogènes 2D sur l’image.
L’importance de la calibration de caméra est capitale dans de nombreux domaines, en particulier en vision par ordinateur. Elle est une étape préliminaire indispensable pour la quasi-totalité des tâches qui requièrent une interprétation géométrique de l’information visuelle. Sans une calibration précise, les mesures effectuées à partir des images seraient erronées, et les algorithmes d’analyse d’image pourraient produire des résultats incohérents ou incorrects.
La pertinence de la calibration réside notamment dans sa capacité à permettre des mesures métriques exactes. En connaissant les paramètres de la caméra, il devient possible d’estimer la taille réelle d’objets, leur distance, ou de reconstruire leur forme tridimensionnelle avec une grande fidélité. De plus, la correction des distorsions optiques, rendue possible par l’estimation des coefficients de distorsion, améliore non seulement la qualité visuelle des images (par exemple, en redressant les lignes courbes) mais aussi la précision des algorithmes qui s’appuient sur la détection de formes géométriques ou de points d’intérêt.
L’impact de la calibration est considérable car elle constitue la clé pour passer d’une simple acquisition d’images à une véritable compréhension de la structure tridimensionnelle de la scène. Elle permet aux machines de « voir » le monde d’une manière géométriquement cohérente. Dans des applications critiques comme la navigation de robots ou les véhicules autonomes, une calibration imprécise ou erronée peut avoir des conséquences graves, menant à des décisions incorrectes et potentiellement dangereuses.
Les applications pratiques de la calibration de caméra sont vastes et variées :
Lire aussi: Sonde de calibration : location
Il existe plusieurs nuances et variations du concept de calibration de caméra.
Une distinction courante est faite entre la calibration monoculaire, qui concerne l’estimation des paramètres d’une seule caméra, et la calibration stéréoscopique. Cette dernière implique la calibration simultanée de deux caméras (ou plus) utilisées en tandem. En plus des paramètres intrinsèques de chaque caméra, la calibration stéréo détermine la relation géométrique rigide entre les caméras, c’est-à-dire la rotation et la translation relatives (la « baseline » étant la distance entre les centres optiques). Un système stéréo calibré permet une triangulation directe pour estimer la profondeur des points de la scène.
Une autre distinction concerne la manière dont la calibration est effectuée. La calibration hors ligne (offline) est la méthode la plus traditionnelle : elle est réalisée avant l’utilisation de la caméra pour sa tâche principale, généralement en utilisant un objet de calibration connu, comme un damier ou une grille de cercles, dont les dimensions et la géométrie sont précisément mesurées. Plusieurs images de cet objet, prises sous différentes orientations, sont utilisées pour résoudre les paramètres. À l’opposé, la calibration en ligne ou auto-calibration (online/self-calibration) vise à estimer les paramètres de la caméra pendant son fonctionnement normal, sans mire spécifique, en se basant sur les caractéristiques naturelles de la scène et les correspondances de points entre plusieurs vues. Cette approche est plus flexible mais souvent plus complexe et potentiellement moins précise.
Les modèles de distorsion eux-mêmes peuvent varier en complexité. Si les modèles polynomiaux pour les distorsions radiales et tangentielles sont les plus courants, des modèles plus sophistiqués peuvent être nécessaires pour des objectifs très grand angle (comme les objectifs fish-eye), qui introduisent des distorsions extrêmes non capturées par les modèles simples. De même, la calibration de types de caméras spécifiques, telles que les caméras omnidirectionnelles (capturant une vue à 360 degrés), les caméras thermiques, ou les caméras à temps de vol (Time-of-Flight, ToF), peut nécessiter des modèles mathématiques et des procédures de calibration adaptés à leur principe de fonctionnement particulier.
Plusieurs concepts sont étroitement liés à la calibration de caméra.
Lire aussi: Guide Complet sur l'Analyseur d'Humidité
En termes de synonymie partielle, le terme « resectionnement de caméra » (camera resectioning) fait référence au problème d’estimer uniquement la pose (paramètres extrinsèques) d’une caméra dont les paramètres intrinsèques sont déjà connus. Un antonyme conceptuel serait l’utilisation d’une « caméra non calibrée », où les algorithmes de vision tentent d’opérer sans connaissance préalable des paramètres de la caméra.
Un bref aperçu historique révèle que les racines de la calibration de caméra se trouvent dans la photogrammétrie. L’essor de la vision par ordinateur dans les années 1970 et 1980 a conduit à un regain d’intérêt et à des développements significatifs des modèles de caméra et des méthodes de calibration, adaptés aux besoins de l’informatique. Des travaux pionniers, comme ceux de Roger Tsai dans les années 1980, ont proposé des solutions robustes pour la calibration 3D. Plus tard, la méthode de Zhengyou Zhang, utilisant une simple mire plane et publiée au tournant du millénaire, a grandement simplifié le processus et l’a rendu accessible à un plus large public.
tags: #calibration #système #de #vision